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A new concept of "generalized enveloping algebra" is introduced by means of 
the generalized Heisenberg commutation relations of non-Abelian quantum 
kinematics. This concept is examined within the quantum-kinematic formalism 
of some noncompact Lie groups of a special kind. The well known Gel'fand 
theorem (which relates the center of the traditional enveloping algebra with the 
adjoint representation) is then extended to the generalized enveloping algebra of 
the group. In this way, the isomorphism of the "generalized left-center" and the 
"traditional right-center" of the corresponding enveloping algebras is proved 
within the left regular representation of noncompact Lie groups of the chosen 
kind. As an interesting application of generalized enveloping algebras, this paper 
contains a brief discussion of quantum-kinematic (boson) ladder operators for 
non-Abelian noncompact finite Lie groups and of their corresponding coherent 
states. 

1. I N T R O D U C T I O N  

In a previous paper (Krause, 1991, hereafter referred to as paper I) the 
formalism of non-Abelian group quantization was briefly revisited within 
the regular representation of noncompact Lie groups (Krause, 1985). It 
was shown that such r-dimensional groups always have a set of r basic 
quantum-kinematic invariant operators, which substantially differ from the 
traditional invariants of the Lie algebra. The relation of the traditional 
invariants with the new quantum-kinematic invariants was also examined 
in paper I. 

Hitherto all invariant operators of Lie group theory have been defined 
as functions of  the generators that commute with all the generators of a given 
representation. For  the sake of brevity we refer to this current notion as the 
traditional invariants of Lie group theory. In the present line of research, we 
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are interested in studying a new type of invariant operators (i.e., quantum- 
kinematic invariants), which are defined as functions of  the generators and 
of the generalized position operators (see below) that commute with all the 
generators. 

In this paper we would like to study this subject further. In particular, 
here we shall discuss the quantum-kinematic generalization of a well known 
theorem (Gel'land, 1950) concerning the center of the enveloping algebra 
and its relation to the adjoint representation of the corresponding Lie 
group (Barut and Raczka, 1977). For the motivation of the present work 
(in particular, for the huge physical possibilities of non-Abelian quantum 
kinematics) we refer the reader to paper I and to the literature quoted 
therein. Let us here only remark that the results in the traditional theory 
of invariants are both remarkably successful and faintly distressing because 
some Lie groups have no Casimir operator; other Lie groups have only 
transcendental invariant operators that do not belong to the enveloping 
algebra. Moreover, it also happens that some Lie groups have no 
traditional invariants at all. 

As shown in paper I, one arrives at completely different results if one 
uses the "group quantization method" (Krause, 1985), for then it turns out 
that every r-dimensional Lie group has a set of r basic quantum-kinematic 
operators, which commute with all the generators of the group. Moreover, 
we have proven that once a Lie group has been "quantized" its basic 
kinematic invariant operators arise in a rather natural manner (even in 
those extreme cases where the group has no traditional invariant at all). In 
paper I we prove this fact for a special kind of noncompact Lie groups. 
Though this feature is valid also for other kinds of Lie groups, quantum 
kinematics of Lie groups, in general, sets a rather difficult issue. (We 
postpone the consideration of the general formalism of quantum-kinematic 
invariant operators to forthcoming papers.) 

The importance of invariant operators in physics has long been known 
because, for the symmetry group of a given system, they yield the conserva- 
tion laws and superselection rules obeyed by the system. In fact, superselec- 
tion rules and characterization of the states of a system by means of the 
eigenvalues and eigenfunctions of invariant operators were emphasized by 
Wigner (1939) in his study of the traditional invariants for the Poincar6 
group. The same task was also performed by Levy-Leblond (1972) for the 
traditional invariants of the Galilei group. Traditional invariants have also 
been found (and applied in physics) for several groups containing the Poin- 
car6 group (Roman et al., 1972), for some containing the Galilei group 
(Abellanos and Alonso, 1975), for the similitude groups of Minkowski 
space in four and three dimensions, as well as for the 0(4, 1) de Sitter 
group (Patera et al., 1975, 1976), and probably for a few more nonsemi- 
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simple Lie groups. Moreover, it has long been well known that traditional 
invariant operators of dynamical groups (Bohm, 1991) yield mass formulas 
(Gell-Mann, 1962; Okubo, 1962), energy spectra (Bargmann, 1936), and 
other physical characterizations of several physical systems. 

As we have already emphasized, all these interesting and successful 
applications of invariant operators have been rooted hitherto on Casimir 
operators, belonging to the traditional enveloping algebra attached to the 
corresponding Lie group (Casimir, 1931). As we shall see in this paper, for 
a given noncompact Lie group, this traditional set is not an exhaustive 
set of invariant operators. On the other hand, it will be shown that the 
generalized enveloping algebra of quantum kinematics (see below) does 
always yield an exhaustive set of invariant operators which are regular 
functions of the generators. 

Furthermore, as a miscellaneous instance of the general utility of 
non-Abelian quantum kinematics (Krause, 1985), in this paper we do also 
apply this new formalism to build a complete set of r commuting boson 
"annihilation" and "creation" ladder operators, which belong to the 
generalized enveloping algebra of any given r-dimensional non-Abelian 
noncompact Lie group. The physical interest of the associated generalized 
coherent states (which will be exhibited below) is well understood 
(Perelomov, 1986). 

Although we do not include physical applications in the space allotted 
in this paper, we deem these two features of the present approach to 
"group quantization" as sufficiently interesting to arouse the attention of 
physicists. Several applications will be published elsewhere. Here we shall 
dwell only on the theoretical formalism of these two issues for the case of 
noncompact Lie groups. 

The organization of this paper is as follows. Section 2 contains a 
rather sketchy review of group quantization and includes some features on 
the basic quantum-kinematic invariants of noncompact Lie groups. In 
Section 3, we present the Gel'fand theorem, which states that the necessary 
and sufficient condition for an element of the traditional enveloping algebra 
to belong to the center of the Lie algebra is that the coefficients of the 
expansion are invariant tensors for the adjoint representation of the group. 
We easily prove this theorem within the present formalism. Next, in Sec- 
tion 4, we extend these notions, introducing the concept of the "generalized 
enveloping algebra" of the generators of the (left) regular representation. In 
this manner, the "generalized center" of the algebra affords an interesting 
generalization of the Gel'fand theorem. In Section 5, as a miscellaneous 
instance, we apply this formalism to build the complete set of r commuting 
quantum-kinematic boson ladder operators (see also Krause, 1992), and 
we find their associated generalized coherent states in Section 6. Finally, in 
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Section 7 we add some Concluding remarks. The paper ends with a short 
Appendix concerning a matter of consistency. 

2. NON-ABELIAN QUANTUM KINEMATICS REVISITED 

We here repeat some of the main concepts leading to group quantiza- 
tion and non-Abelian quantum kinematics of noncompact Lie groups, 
because this new formalism is not known to most physicists (Krause, 
1985). It is our intention to describe (without proof) only those features 
which are relevant for the discussion of the quantum-kinematic generalized 
enveloping algebras. In particular, here we shall not dwell on the possible 
physical meaning of the formalism (Krause, 1986, 1988). 

Henceforth, G denotes a noncompact, connected and simply connected, 
r-dimensional non-Abelian Lie group (such as, for instance, the universal 
covering group of a noncompact Lie group). Furthermore, we shall 
assume that there exists a coordinate patch q = ( q l , . . . ,  qr) which covers 
the whole group manifold M(G) and maintains everywhere a one-to-one 
correspondence with the elements of G; i.e., the coordinates qa, a = 1 . . . .  , r, 
are real and provide a set of r essential parameters of G. This is a strong 
condition, to be sure. However, as a matter of fact, most Lie groups of 
physical interest are of the type known as "linear Lie group," in the sense 
that they have at least one faithful finite-dimensional representation. It is 
well known that the whole of a connected linear Lie group of dimension r 
can be parametrized by r real numbers ql . . . ,  qr, which form a connected 
set in R r. Of course, there is no requirement in general that this global 
parametrization of G be faithful. Nevertheless, there are many instances of 
noncompact, connected and simply connected linear Lie groups (of physi- 
cal relevance) for which the global parametrization provides a one-to-one 
faithful mapping. For the sake of simplicity, and in order to concentrate on 
the issue of generalized quantum-kinematic enveloping algebras, in this 
paper we shall deal exclusively with Lie groups which satisfy this condition. 

In the sequel we write ~ = ~(q) to denote that point in M(G) which 
labels the inverse element corresponding to q, and e = ( e l , . . . ,  e r) ~ M(G) 
to denote the labels of the identity element. Of course, M(G) carries an 
analytic mapping, g : M ( G ) x M ( G ) ~ M ( G ) ,  that is endowed with the 
group property of G. Hence, in this parametrization of G one has a well- 
defined set of r group-multiplication functions, ga(q ' ;q)=q"a~M(G),  
which realize the group law in M(G) (see, e.g., Racah, 1965). 

Now, in order to quantize the group G let us associate the essential 
parameters qa with a set of r commuting Hermitian operators Q~, which 
act within the carrier space of the regular representation and may be 
interpreted as generalized "position" operators of the group manifold. 
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Thus, within the common rigged Hilbert space fig(G) that carries both (left 
and right) regular representations, we next define the following spectral 
integrals over the group manifold (Krause, 1985, 1991): 

Qa : f drq [q) q. (ql = f d#L(q) [q)L q~ (ql L 

= f  dpR(q) Iq )Rq  ~ (q[R (2.1) 

i.e., we set Q"= Q~= Q~. The Q's are generalized position operators of 
M(G), acting in fig(G); in fact, one has 

Qa i q ) = q a  Iq), Qa iq)L=q~ Iq)L, Qa Iq )R=qa  Iq)R (2.2) 

Hence, the Q's provide a complete set of commuting Hermitian operators 
in fig(G). Here we have used the Hurwitz invariant measures on M(G); i.e., 
dP L ( q ) -- poE(q) dr q, dl~ R( q ) =-- t~oR( q ) dr q, and dr q = dq 1. . �9 dq r. (In order 
to simplify the notation, in this paper we assume #L = PR =/Zo, but this 
choice is not strictly necessary.) (See the Appendix of paper I for details, 
and for a unified formalism of the two regular representations which shall 
be assumed as theoretical framework in what follows). 

In paper I we have shown that the set of r basic quantum-kinematic 
invariant operators correspond essentially to the generators of the right 
(left) regular representation acting as invariant operators within the left 
(right) regular representation of G. As was shown in that paper, this feature 
is possible if one "quantizes" the group (i.e., q~ ~ Qa), because only in this 
fashion do the basic quantum-kinematic invariant operators appear as 
linear combinations of the generators, whose matrix coefficients are 
functions of the generalized position operators Qa of G. Indeed, it was found 
that in the left regular representation (for instance) the invariant operators 
are given by 

Ra(Q; L) = R~(Q; L)  = ~ ( Q ) L  b _ uh fo  b (2.3) 

where the L's are the generators, A](q)=A](~) are the entries of the 
matrix of the adjoint representation GA of G, and f ib  denotes the structure 
constants. In fact, from the (left) generalized Heisenberg commutation 
relations associated with G, namely (Krause, 1985) 

[Qa Qb] = 0 

[Q", Lb] = ihR~b(Q) 

[L~, Lb] = -- ihf~bLc 

(2.4) 

(2.5) 

(2.6) 
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it follows that 

[-Ra(Q; L), Lb'] = O, a, b = 1 . . . . .  r (2.7) 

As is well known, one defines Lie's (right and left) vector fields as 
follows: 

X~(q)= Rba(q)Ob, r~(q)-- Lb(q)Ob (2.8) 

where Rb~ and L~ are the (right and left) transport matrices for 
contravariant vectors in M(G), which are obtained from ga(q'; q) in 
the usual "classical" fashion; i.e., R~(q)= O, gb(q,; q)lq'=e, and Lb,(q)= 
O'agb(q; q')lq,=e. In Eq. (2.5) we have defined 

Rb(Q) = ~ d#L(q)Iq)L Rba(q) (ql r  (2.9) 

and the La are the generators of the left regular representation; i.e., 

i a / 
La Iq)L = ihXa(q) Iq)L 

(2.10) 

(2.11) 

The Lie operators satisfy the Lie algebra: 

[Xa(q),Xb(q)]=f]bXc(q),  [Ya(q), Yb(q)]= --f~bYc(q) (2.12) 

c c R c where the structure constants are given by fab=Rb,  a(e) - o,b(e)-= 
ZCa, b(e) -- ZCb, a(e). 

In the present formalism we also need the inverse transport matrices 
in M(G), which are defined by Rba(q)=O'a(q';(t)lq,= q and Lb(q)= 
t f 'agb(q;q ')[q,=q.  [Clearly, one has Rb~(e) b b = L,(e) = 6, and /~](q) Rb(q) = 
E~(q) L~(q)=fbo. ] As a matter of fact, the following "mixed" transport 
matrices in M(G) correspond to the adjoint representation of G (cf. 
Paper I): 

Aba(q) = R~a(q) E~(q), ~b(q) = L](q) ~b(q) (2.13) 

since one has 

and 

A](q') Ab(q) = Aba[g(q'; q)] (2.14) 

Ab(e+ f q ) =  fib+ c b f q f  ca (2.15) 
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For proofs and more details concerning these results, we refer the 
reader to paper I. The main features concerning our interest here are 
shown in equations (2.3) and (2.7). Similar results hold for the right regular 
representations. Henceforth, for the sake of concreteness, we shall work 
only within the left regular representations of G. 

3. THE GEL'FAND TH EO REM 

First, let us recall the traditional enveloping algebra EL of the Lie 
algebra. By definition, this is the set of all those operators which are 
functions of the L's of the form 

E(L)=E~ . �9 �9 (3.1) 

where the coefficients E ~ E a, E (ab), E(abc),... are arbitrary constant 
c-numbers. One can always consider totally symmetrized coefficients in 
equation (3.1), because of the Lie algebra obeyed by the generators. [For  
instance, one easily gets 

EabL~Lb = E(ab)L~Lb _ •  i7[ac37 2~'~.1 b e  Y ~ a  (3.2) 

and so on.] Therefore, we can use the "totally reduced" form (3.1) for these 
operators, without loss of generality. As one knows, the center CL of the 
enveloping algebra EL is the set of all operators C(L)~  EL which commute 
with all the generators: 

[C(L), L~] = 0, a = 1 . . . . .  r (3.3) 

In this way, the Gel'fand theorem states that the necessary and sufficient 
condition for an element C(L) of the enveloping algebra EL to belong to 
the center CL is that the coefficients, say C ~ Ca~ C (ab), C (abe) . . . . . .  are 
invariant tensors for the adjoint representation GA of G. We can easily 
prove this theorem in the present formalism since, as is well known, one 
has 

U*r(q) L~ UL(q) = A](q)Lb (3.4) 

where the U's are the representative operators of G (within the left regular 
representation) and the r x r matrix Ab(q) carries the adjoint representation 
of G. Hence, if C(L) is given by 

C( L ) = C ~  CaLa + c ( a b ) L a L b  q- . �9 �9 (3.5) 
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one gets 

U~(q) C(L  ) UL(q) = C ~  C A ~ ( q ) L ,  + C(Ca)A~(q) A~a(q)L,Lb + . �9 . 

(3.6) 

and therefore a sufficient condition for C ( L ) ~  CL is that the coefficients 
satisfy 

A~b(q) Cb= C a, A~c(q)Aba(q)C(Ca)= C (ab) . . . .  (3.7) 

Note that, due to the total symmetrization of the coefficients, this condition 
is also necessary (Barut and Raczka, 1977). 

4. G E N E R A L I Z E D  E N V E L O P I N G  ALGEBRAS 

We are now in a position to extend these notions, introducing the 
concept of the generalized enveloping algebra of the generators of the left 
regular representation of G. We shall denote this new enveloping algebra 
by EL(Q). By definition, EL(Q) contains all the operators F(Q; L)  which 
are functions of the Q's and the L's, and which are regular in the L's. So, 
let us write, for any element F(Q; L ) ~  EL(Q), 

F ( Q ; L ) = F ~  . �9 . (4.1) 

where now the coefficients are operators which one obtains from a corre- 
sponding set of c-number functions F~ F~(q), F(ab)(q) . . . .  , defined on 
the group manifold M(G).  Here we take the "normal order" for the 
noncommuting Q's and L's, as shown in equation (4.1), because in this 
fashion, introducing the "Q-representation" of quantum kinematics 
(Krause, 1985), we can write 

L(q[ F(Q; L ) [ t p ) - - F E q ;  - i h X ( q ) ]  $L(q) (4.2) 

where ~L(q)=L{qlO) ,  I ~ ) ~ ( G ) ,  and where F [ q ; - i h X ( q ) ]  is the 
"scalar transformation" operator given by 

F[ q; - ihX(q) ] =- F~ - ihFa(q) Xa(q) - hZF(ab)(q) Xa(q) Xb(q) + . �9 �9 

(4.3) 

It is advantageous to write the operators of EL(Q) in the "reduced" form 
(4.1); that is, with totally symmetrized functions F (ab), F(abc), . . . ,  of the 
Q's, so that further reduction by means of the generalized commutation 
relations (2.5) is not possible. 
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In the same manner, we define the generalized enveloping algebra 
ER(Q) of the generators R a of the right regular representation (cf. paper I) 
as the set of operators of the "normal" form 

F(Q; R)  = F ~  + F " ( Q ) R a  + F(ab)(Q)R~Rb + . �9 �9 (4.4) 

In this fashion, within the left quantum-kinematic formalism of G, one gets 

z (q[ F ( Q ; R ) I f f )  = Fl-q; - i h Y ( q ) - � 8 9  ~9c(q) (4.5) 

where we have written (tr f ) ,  =f~b [cf. paper I, equation (3.7)]. 
It is crear that there is a trivial one-to-one correspondence between the 

operators belonging in the two generalized enveloping algebras EL(Q) and 
ER(Q); namely, F(Q; L ) ~  F(Q; R),  where one uses the same function F. 
More interesting is the following (nontrivial) correspondence. According to 
equation (2.3), every operator F ( Q ; R ) ~ E R ( Q )  can be written as an 
element F~(Q; L)  ~ EL(Q); and conversely, every element F(Q; L )  ~ EL(Q) 
can be written as F A ( Q ; R ) ~ E R ( Q ) .  Note that here we mean 
F~(Q; L)  - F(Q; R)  and F,~(Q; R)  =- F(Q; L),  where the f o rms  of the 
functions Fz  and FA are certainly not the same as that of F. Indeed, 
if F(Q; R)  ~ ER(Q), using 

- - c  [A ~(Q), Lb] = -- ih f ;dA~(Q) (4.6) 

Ewhich follows from equation (2.6) and the properties of the adjoint 
representation; see paper I, equation (2.17)], after some manipulations, 
one obtains 

F(Q; R) = [F~ - �89 - ~'~1112rcJacJba~r p(,b)~n~t~, --" " " " ] 

+ [rb(Q) ihfadr(bcl(Q) + ] -~ . . . .  A b ( Q ) L  a 

+ [F(Ca)(Q)+ �9 . . ] Ac~(Q) A ~ ( Q ) L a L b +  . . . 

- F ~  + F ] ( Q ) L ~  + F~Aab)(Q)L~Lb + . �9 �9 

=FA(Q;  L)  (4.7) 

which manifestly belongs to EL(Q). (One proves the converse in a similar 
fashion.) 

However, recalling the law of transformation of the generalized 
position operators of the group, i.e., 

Utc(q) QaUL(q ) = ga(q; Q) (4.8) 
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[cf. paper I, equation (2.9)], it is immediate that for the operators 
belonging to ER(Q) it follows that 

U*L(q) F(Q;  R )  UL(q)  = F i g ( q ;  Q); R] (4.9) 

quite generally. Therefore, we see that only those operators which belongs 
to the tradit ional enveloping algebra ER of the right-generators R~ yield 
invariant operators in the left regular representation of G. Moreover, these 
operators are functions of the Q's and the L's, which are regular in the L's, 
and therefore they pertain to the generalized enveloping algebra EL(Q). In 
fact, let 

E ( R )  = E ~ + EaRa  + E(ab)R~Rb + " �9 �9 (4.10) 

be an element of the (traditional) enveloping algebra ER; then, by means 
of equation (4.7), we obtain the following lef t- invariant operator: 

E ( R )  = ( E  ~  1. b a 1 lec f d  l ~ ' ( a b )  ~th f  abE - 4 J a c J b a ~  " ~  " " " ) 

+ ( E  b -  ih faaE  cb + . . . ) A ~ ( Q ) L a  

+ (Ei~a) + . . . ) ~ a ( Q )  Aba (Q)LaLb  + . . . 

- E o + E ] A ~ b ( Q ) L a  + E ~ a ) A ~ ( Q )  Aba(Q)LaLb  + . . . 

= E~(Q; L) (4.11) 

Note that, contrary to the traditional contents of Gel'fand's theorem, this 
is an invariant operator for the left regular representation even if the 
coefficients E a, E (oh) . . . . .  in equation (4.10) are not  invariant tensors for 
Ga; in other words, even if E ( R ) r  CR.  

Conversely,  if one considers an operator of EL(Q) of the special form 

E ( Q ;  L )  = E ~ + EbAab(Q)L a + E(cd)A~(Q) A b ( Q ) L a L b  + . �9 �9 (4.12) 

where the E's are arbitrary c-numbers [which is an invariant operator of 
the left regular representation, as can be proved by means of the group 
property of the adjoint matrix Ab(q)], then it is easy to show that such an 
operator belongs to the traditional enveloping algebra ER. Furthermore, it 
can be proved also (though the proof is not so simple) that all the elements 
E ( Q ;  L )  of the generalized enveloping algebra EL(Q) which satisfy the 
invariance law 

U*L(q) E ( Q ;  L )  UL(q)  = E ( Q ;  L )  (4.13) 

are necessarily of the form stated in equation (4.12). 



Generalized Enveloping Algebras 1373 

Hence, we have shown that all operators of the form defined in equa- 
tion (4.12) constitute the generalized center CL(Q) [of the generalized 
enveloping algebra EL(Q)], since they commute with all the generators; 
i.e., 

[E(Q; L), La] = 0, a = 1 . . . .  , r (4.14) 

Moreover, we have shown also that there is an isomorphism CL(Q)~ CR 
between the generalized "left-center" and the traditional "right-center" 
of the corresponding enveloping algebras. [Clearly, one proves the 
isomorphism CR(Q)~CL in the same manner.] These results provide an 
interesting generalization of the Gelfand theorem, since the coefficients E ~ 
E ~, E (ab) . . . .  in equation (4.12) are completely arbitrary c-numbers 
(namely, they are not necessarily invariant tensors of the adjoint representa- 
tion G A). 

In particular, it is also interesting to observe that, according to the 
Gel'land theorem, if C(L) belongs to the traditional center CL, then from 
equations (3.7) and (4.12), it follows that C(L)eCR; and moreover, one 
has 

C(L) = C(R) (4.15) 

[because in this case one proves CA(R) = C~(L)]. This fact is well known 
indeed (Chen, 1989). However, its importance for non-Abelian quantum 
kinematics should be stressed, since the superselection rules provided by the 
invariant operators belonging to the traditional center CL=CR [of the 
generalized enveloped algebras EL(Q) and ER(Q) ] play an outstanding 
role in physical applications (Krause, 1986, 1988). 

5. GENERALIZED QUANTUM-KINEMATIC BOSON LADDER 
OPERATORS 

As an important application of the formalism of generalized quantum- 
kinematic enveloping algebras, let us consider the possibility of having a set 
of r first-order linear operators belonging to EL(Q), of the general form 

~a(Q;L)=Aa(Q)+iB~(Q)Lb, f i](Q;L)=Aa(Q)-iLbB~(Q) (5.1) 

endowed with the following fundamental commutation properties: 

[,~o, f ib]  = O, E,~o, f i~]  = 6o~, (5.2) 

for a, b = 1 . . . .  , r. In another paper (Krause, 1992, paper II henceforth), 
we have proven that such a set of boson ladder operators exists, notwith- 
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standing the fact that G is a non-Abelian Lie group (of the special noncom- 
pact kind introduced in Section 2). Furthermore, since Aa(q) and Bb(q) 
must be real regular functions of the q's everywhere on M(G), we have also 
proven that these operators are unique (within the addition of arbitrary 
constant multiples of the identity). Moreover, one can calculate them 
explicitly for any given noncompact Lie group of the assumed kind. In this 
way, one gets a complete set of non-Hermitian ladder operators acting in 
the Hilbert space that carries the regular representation of G, whose eigen- 
vectors can be found, quite generally, as a system of special functions 
defined in M(G). 

Taking into account the generalized Heisenberg commutation rela- 
tions associated with a non-Abelian G [-equations (2.4)-(2.6)], as well as 
the definitions of Lie vector fields acting on M(G) [given in equation 
(2.8)], a straightforward calculation yields the following system of coupled 
nonlinear differential equations for the coefficients of the ladder operators 
(see paper II): 

B~a(q) Xc(q)Ab(q)--B~b(q)Xc(q)Aa(q)=O (5.3) 

Bd(q) Xd(q) B~b(q) -- Bd(q) Xd(q) B](a) + f~deBda(q) B~b(q) = 0 (5.4) 

B](q) Xc(q) Ab(q) + B~b(q) Xc(q) Aa(q) - hB](q) Xc(q) Xd(q) B~(q) = h 16ab 

(5.5) 

for all q~M(G). These are necessary and sufficient conditions for the 
operators defined in equations (5.1) to be endowed with the desired 
fundamental commutation relations [equations (5.2)]. Of course, we are 
interested only in those solutions Aa(q) and Bb(q) that are regular 
everywhere on the group manifold, so that 1(011~a 11//)1 = [(01 6~ 10)1 
remain finite for all 1 0 ) e  ~f~(G). 

Now, in order to solve this problem, we use an indirect method. 
(The method we follow in the sequel is different from that used in paper II, 
and has the advantage of yielding the desired coherent states in a 
straightforward way.) To this end, let us recall the Abelian group of trans- 
lations Tr in r dimensions, with the group law given by q,,a=q,a+q~, 
a----1 . . . .  , r [namely, we use canonical parameters ( - - ~  < qU< + ~ )  for 
labeling the elements of Tr]. In this particular case, equations (5.3)-(5.5) 

b b become much simpler, and Aa(q) = ~qa + 7 ~, B~(q) = fl6 ~, with ~fl = (2h) -1 
and V~ -- arbitrary constants, yield a solution. So one has the standard set 
of boson ladder operators 

h a ( Q ; P ) = ~  Qa+-~P a , a , , ( Q , P ) = - - ~ Q - - h P a  (5.6) 
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as it must be. Here we have written P~ to denote the generators of Tr, i.e., 
Ur(6q) = I -  (i/h) 6qaPa, with [Qa, P h i  =- ih(~ab, as usual. The fact that the 
standard ladder operators are the only admissible solution (within arbitrary 
V's) to equations (5.3)-(5.5) when G = Tr follows because the A's and the 
B's must be regular everywhere (in particular, at q=0) ,  and because 
consistency demands (~] ~ 1~)*=  (~1 ~ [~)- In this sense the familiar 
ladder operators for T r shown in equation (5.6) are essentially the unique 
solution of the problem when G--Tr. (We set v a=0,  for all 1 ~a~<r, 
without loss of generality.) 

We next solve our problem for a non-Abelian noncompact r-dimen- 
sional G, using therefore the canonical parameters qa (i.e., Cartesian 
coordinates) in the noncompact, connected and simply connected, group 
manifold M(G). With this aim we use the conceptual framework presented 
in the Appendix of paper I (we refer the reader to that article in order to 
have a good understanding of the details that follow). Since P~ I q ) =  
ihO~ Iq), using the deefinition Iq)L = [#oiL(q)] ~/2 [q) [see paper I, equa- 
tion (A.6)], we obtain the following realization of Pa when operating on 
the kets [q)L of the left (rigged) continuous basis: 

P~ [q)L = {fb(q)Lb + �89 L(q)], a} [q)L (5.7) 

Hence, within the left regular representation of G, we can define the 
following operators that belong to EL(Q): 

P~ = Rb(Q)Lb -- ih{X6(Q) Rb(Q) - �89 [In/S(Q)], a} (5.8) 

t _  from which, using P a -  Po, we get 

Xb(q) fb(q) = [ln/S,(q)], a (5.9) 

and thus we obtain 

p,  = f~(Q)L b _ �89 fib(Q) (5.10) 

[Conversely, the condition stated in equation (5.9) can be proved in a 
direct manner, and hence P~ = P ,  follows.] In this fashion, one sees that 
the standard ladder operators associated with a non-Abelian noncompact 
Lie group G can be cast in the following forms, within the left regular 
representation: 

1 i -  b 
f i~(Q;L)=~2{[Qa+~Xb(Q)Kb~(Q)]+~R~(Q,Lb } (5.11a) 

g t : ( Q ; L ) : - ~ 2 { I Q ~ - ~ X b ( Q ) f b ( Q ) ] - ~ f b ( Q ) L b }  (5.11b) 
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In other words, we have found that 

1 a 1Xb(q)~ba(q) ' B~(q) -~h- lR~(q)(5 .12)  Aa(q) = q + 5  = 

yield the desired solution to equations (5.3)-(5.5). [-One can prove this 
result quite generally, without recourse to the group Tr, and without 
assuming "canonical" parameters (see paper II).] Note that, for any given 
1~9> e ~'~(G), one has 

= drq~b*(q)(q'~+Oa)~p(q) 

= x/~ i d#L(q) O*(q) qa + [Xb(q) ~(q)]  

+ Rb(q) Xb(q)} 4'L(q) (5.13a) 

-t Ir = I <~ia ,  ---~f drq~b*(q)(qa+ea)O(q) 

1 { 1 
= ~ f d#L(q) O~(q) qa _~ [Xb(q)/~(q)] 

__ ~b(q) Xb(q)} OL(q) (5.13b) 

where one defines ~,(q)=<q]~,> and ~,L(q)=c<ql0>; i.e., 0L(q)= 
[#oiL(q) m q/(q). (see the Appendix in paper I for these details; see also 
the Appendix of the present paper). 

6. QUANTUM-KINEMATIC COHERENT STATES 
In this fashion, one is ready to find the simultaneous eigenvectors 

In  > = ] h i ,  - �9 �9 , n r  > s u c h  t h a t  

'~*~a In> - n o  In> (6.1) 

holds for a = 1 . . . . .  r, within the left regular representation of G. (We did 
not consider this subject in paper II. Here we shall fill this gap.) One 
defines <q In > = @,(q) = ~bnL(q l) . . . . .  q~nr(qr), where each q~,,o(q~) denotes the 
corresponding ordinary one-dimensional Hermite orthogonal function, for 
n ,=0 ,  1, 2 , . . . ,  with a =  1 , . . . ,  r. Thus, we write 

In) = f drq q~,,(q) IP> = f d#L(q)~L)(q) Iq>L (6.2) 
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where the generalized r-dimensional Hermite functions of G are just given by 

~b(.Z)(q) = z ( q l n )  = [ # o  1L(q)] 1/2 ~b.(q) (6.3) 

The consistency of these manipulations can be checked very easily by 
means of the following realization of the "creation" operators: 

a2[q)L=--~ q + ~ O , [ l n / ~ ( q ) ] + 3 ,  [q)L (6.4) 

Furthermore, since the orthogonal basis {InS=In1 . . . .  ,nrS} is 
complete in ~(G) ,  one has 

UL(q) In) = ~ A m .,(q) [m) = f d#L(q') ~b~.L)[g(~; q')] Iq' )L 
in  

where the group matrices 

Ain..(q) = (m[ UL(q)in) 

= f dpL(q') ~ ) (q ' )  ~b~.L)[g(~; q')] 

(6.5) 

= f dpL(q') q~)[g(q; q')] ~b~L)(q ') (6.6) 

are unitary and afford an infinite-dimensional reducible (left) representa- 
tion of G. In fact, written more explicitly in terms of the Hermite functions, 
these matrices read 

Am.n(q) = kto I f dkt(L)(q' ) {L[g(q; q')] L(q') } 1/2 ~bm[g(q; q')] q~n(q') 
(6.7) 

and therefore, using the completeness relation [paper I, equations (A.7)] 

~(~.L)(q')(b(.L)(q)=L(q'lq)L=#oIL(q')6(~(q'--q) (6.8) 
n 

we find that a rather lengthy (albeit straightforward) calculation yields 

Z Am-p(q') Ap..(q) = Ain,.[g(q'; q)] (6.9) 
P 

as required. Interesting enough, written out in full detail, these matrices are 
given by Hurwitz G-invariant integrals of r-fold products of ordinary 

902/32/8-7 
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Hermite orthogonal functions (suitably modulated) [cf. (6.7)1. Of course, 
in many applications, the evaluation of these integrals can be rather 
cumbersome, because of the presence of the factor 

" �9 (6.10) ~m[g(q;q')] = NmaHrn~[g (q,q ' )]exp --�89 ~ [gb(q;q,)]2 
a = l  b = l  

in the integrands. 
By the same token [that is, using Iq)L= E#o-lL(q)] 1/2 Iq)], one 

obtains immediately the quantum-kinematic coherent states associated with 
the left regular representation of G. One solve &~ [ z )=  2-1/2za Iz), where 
I z ) = l z l  . . . . .  z r ) ;  i.e., d~(q l z )=(za -q , ) (q l z ) .  This yields the well- 
known standard coherent states of T~ in the Fock-Bargmann representa- 
tion (Perelemov, 1986), namely 

$(q;z)=(q[z)=c(z)exp(  1 a b -~6ab q q +aaq ~) (6.11) 

Hence, one also has L <ql fa Iz > = 2-1/2z a L <ql Z >, from which it follows 
that 

c(z) 1 +aaq a) Iq)L (6.12) I Z ) = ~ o f  d#L(q) [L(q)]l/2 exp ( - - ~ f  abqaqb 

which are the desired generalized coherent states for the non-Abelian non- 
compact G. Clearly, these most interesting kets deserve a more detailed 
study. In particular, their possible connections (if any) with Perelomov's 
generalized coherent states (Perelomov, 1986) will be discussed elsewhere. 

By means of the same technique one can also define the generalized 
bosonic ladder operators which belong to the ER(Q) enveloping algebra; 
that is, in terms of the quantum-kinematic invariant momenta Ra(Q; L) (as 
operators within the left regular representation of G), instead of using the 
adjoint-vector momenta L a as was done above (paper II). Furthermore, 
there is no difficulty in defining these generalized ladder operators within 
the central extension G by U(1); i.e., for the regular ray representations of 
the group. 

7. C O N C L U D I N G  REMARKS 

As an important conclusion of this study, we see that the r basic quan- 
tum-kinematic invariant operators constitute an (almost) exhaustive set of 
invariants of G, in the sense that every invariant function F(Q; L) which is 
regular in the L's is a function f(R) that depends exclusively on the basic 
invariants Ra(Q; L) of the (left) regular representation. As we have already 
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shown in paper I, all the traditional invariant functions of the L's are of 
this kind. 

Furthermore, the formalism admits the construction of operators 
F(Q;L)~EL(Q), which may be important both for mathematics and 
theoretical physics. For example, one may be interested in some functions 
FI(Q;L) and F2(Q;L) which satisfy some prescribed commutation 
relations, say 

[FI(Q; L), F2(Q; L)] = FI2(Q; L) (7.1) 

where F12(Q;L ) is a prescribed function. The non-Abelian quantum- 
kinematic analysis of (7.1) would give us the system of partial differential 
equations which one has to solve in order for this commutation relation to 
be possible at all. It is important to remark that this technique goes far 
beyond the canonical quantization procedure, which stems from changing 
a classical Poisson bracket into a commutator of quantum operators. The 
ladder operators of non-Abelian noncompact Lie groups presented in this 
paper are a good instance of this feature [equations (5.3)-(5.5)]. 

The physical applications of the generalized boson ladder operators of 
non-Abelian quantum kinematics settle an interesting question. As a matter 
of fact, in our previous work, quantum-kinematic ladder operators were 
already used rather successfully (Krause, 1986, 1988). It is indeed well 
known that several physically relevant Lie algebras can arise very naturally 
as bilinear products of boson annihilation and creation operators (see, e.g., 
Barut and Raczka, 1977). These Lie algebras are intrinsic to the quantized 
structure of the group G, and therefore they may yield interesting multi- 
plets within the quantum-kinematic models (Krause, 1986, 1988), without 
recourse to direct or semidirect products in order to bring them to fore. 
[For a possible application of this feature in the quantized theory of the 
Poincar6 group PT+(1, 1), see Krause (1992).] 

Hence, in view of the previous results, it seems that the generalized 
Heisenberg commutation relations of non-Abelian quantum kinematics 
[-equation (2.5)] are group-theoretic tools worth further research both in 
physies and mathematics. 

APPENDIX 

Since much of what has been said here stems from the "intertwining 
formula" (see paper I) 

Iq)L = [l~otL(q) ] m Iq ) (A.1) 

one could question how well such a simple change of scale (in the 

902/32/8-7* 
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continuous basis of the rigged Hilbert space) is able to produce so many 
far-reaching consequences. Indeed, a striking feature of this formula is that 
it produces, almost automatically, easy solutions to otherwise very difficult 
problems. Hence, the reader might have serious doubts about its con- 
sistency with the non-Abelian group structure of G. So it is our purpose 
here to provide a consistency control of the intertwining formula (A.1). This 
can be done very briefly. From the action of the (left) unitary operators of 
the group, namely 

UL(q') Iq)L = Ig(q'; q))L 

and from Eq. (A.1) we get 

where we define 

UL(q') Iq~ = u(q'; 4) I g(q'; q)~ 

(A.2) 

(A.3) 

u(q'; q)=  {L(q) L[g(q'; q)] }1/2 (A.4) 

[Note that (Iq)} is the continuous basis for the regular representation of 
Tr, in terms of canonical parameters; i.e., Cartesian coordinates in the 
assumed group flat-manifold.] Of course, equations (A.3) and (A.4) must 
be consistent with the (non-Abelian) group property of G; i.e., 

UL(q') UL(q) < UL[g(q'; q)] (A.5) 

This is indeed the case, since after some manipulations one obtains the 
following condition on u(q'; q): 

u(q'; q) u[q"; g(q'; q)] = u[g(q"; q'); q] (A.6) 

which is satisfied, according to the definition (A.4). This ends the required 
control. 

By the way, this result shows neatly that one and the same Hilbert 
space that carries the regular representation of the Abelian group Tr (of 
rigid translations in the r-dimensional Cartesian scaffolding) also carries 
both regular representations of all those r-dimensional noncompact 
(connected and simply connected) Lie groups of the kind considered in this 
paper. It may also explain why the standard Heisenberg commutation 
relations 

EQ", Pb] = ih6~ (A.7) 

can be used as a valid rule of canonical quantization, even for those classi- 
cal systems which do not manifest the translation symmetries described by 
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Tr, provided their symmetry  properties can be englobed in a noncompac t ,  
connected and simply connected Lie group [such as, for instance, the 
simple harmonic  oscillator; cf. Krause (1986)].  
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